82 research outputs found

    Use of Combined Hartree-Fock-Roothaan Theory in Evaluation of Lowest States of K [Ar]4s^0 3d^1 and Cr+ [Ar]4s^0 3d^5 Isoelectronic Series Over Noninteger n-Slater Type Orbitals

    Full text link
    By the use of integer and noninteger n-Slater Type Orbitals in combined Hartree-Fock-Roothaan method, self consistent field calculations of orbital and lowest states energies have been performed for the isoelectronic series of open shell systems K [Ar]4s^0 3d^1 2(D) (Z=19-30) and Cr+ [Ar] 4s^0 3d^5 6(S) (Z=24-30). The results of calculations for the orbital and total energies obtained from the use of minimal basis sets of integer- and noninteger n-Slater Type Orbitals are given in tables. The results are compared with the extended-basis Hartree-Fock computations. The orbital and total energies are in good agreement with those presented in the literature. The results are accurately and considerably can be useful in the application of non-relativistic and relativistic combined Hartree-Fock-Roothaan approach for heavy atomic systems.Comment: 11 pages, 6 tables, 2 figures. submitte

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Unprocessed Viral DNA Could Be the Primary Target of the HIV-1 Integrase Inhibitor Raltegravir

    Get PDF
    Integration of HIV DNA into host chromosome requires a 3′-processing (3′-P) and a strand transfer (ST) reactions catalyzed by virus integrase (IN). Raltegravir (RAL), commonly used in AIDS therapy, belongs to the family of IN ST inhibitors (INSTIs) acting on IN-viral DNA complexes (intasomes). However, studies show that RAL fails to bind IN alone, but nothing has been reported on the behaviour of RAL toward free viral DNA. Here, we assessed whether free viral DNA could be a primary target for RAL, assuming that the DNA molecule is a receptor for a huge number of pharmacological agents. Optical spectroscopy, molecular dynamics and free energy calculations, showed that RAL is a tight binder of both processed and unprocessed LTR (long terminal repeat) ends. Complex formation involved mainly van der Waals forces and was enthalpy driven. Dissociation constants (Kds) revealed that RAL affinity for unbound LTRs was stronger than for bound LTRs. Moreover, Kd value for binding of RAL to LTRs and IC50 value (half concentration for inhibition) were in same range, suggesting that RAL binding to DNA and ST inhibition are correlated events. Accommodation of RAL into terminal base-pairs of unprocessed LTR is facilitated by an extensive end fraying that lowers the RAL binding energy barrier. The RAL binding entails a weak damping of fraying and correlatively of 3′-P inhibition. Noteworthy, present calculated RAL structures bound to free viral DNA resemble those found in RAL-intasome crystals, especially concerning the contacts between the fluorobenzyl group and the conserved 5′C4pA33′ step. We propose that RAL inhibits IN, in binding first unprocessed DNA. Similarly to anticancer drug poisons acting on topoisomerases, its interaction with DNA does not alter the cut, but blocks the subsequent joining reaction. We also speculate that INSTIs having viral DNA rather IN as main target could induce less resistance

    Electronic Structure of Xenon Difluoride

    No full text

    Basic Approximations in the Theory of the Chemical Bond

    No full text

    Non-Empirical Molecular Orbital Theory for Molecular Crystals

    No full text

    General Computational Strategies

    No full text
    • …
    corecore